IRDER OF REACTION

Zero Order Reactions

A zero order reaction has a constant rate that is independent of the concentration of the reactant(s); the rate law is Rate = k

HALF LIFE (†1/2)

Time in which half of inital amount is left.

$$\mathfrak{t}_{1/2} = \frac{[A]_0}{2k}$$

First Order Reactions

A first-order reaction is a reaction that proceeds at a rate that depends linearly on only one reactant concentration.

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

HALF LIFE (†1/2)

$$t_{1/2} = \frac{0.693}{k}$$
 [A] = $\frac{[A]_0}{2^n}$

Second Order Reactions

A chemical reaction in which the rate of the reaction is determined by the concentration of two chemical reactants involved or the square of the concentration of one chemical reactant.

$$k = \frac{1/[A] - 1/[A]_0}{t}$$

HALF LIFE (†1/2)

Pseudo first order reactions

If the concentration of a reactant remains constant (because it is a catalyst or it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, obtaining a pseudo-first-order (or occasionally pseudo-second-order) rate equation.

For example, the hydrolysis of sucrose in acid solution rate r = k[sucrose]. The true rate equation is third-order, r = k[sucrose] [H+] [H₂O]; however, the concentrations of both the catalyst H⁺ and the solvent H_2O are normally constant, so that the reaction is pseudo-first-order.

Nth order reactions

N_{th} order reaction is one which proceeds at the rate that depends on concentration of multiple reactants or on multiple steps.

$$\Rightarrow k = \frac{1}{(n-1)!} \left[\frac{1}{[A]_{t}^{n-1}} - \frac{1}{[A]_{0}^{n-1}} \right] \frac{\text{HALF LIFE ($t_{1/2}$)}}{t_{1/2} = \lim_{x \to n} \frac{2^{x-1} - 1}{(x-1)! k[A]_{0}^{x-1}}}$$

